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ABSTRACT 

In the current age of globalism, the issue of cyber security is increasingly prominent. Hacker attacks, virus outbreaks and 

other hidden dangers seriously harm the network system. Cyber security risk has become one of the most important risks 

facing contemporary society. The management of cyber security risk is an important guarantee for the healthy development 

of network information technology. From the perspective of network system, this paper reviews the research status of 

epidemic threshold, risk propagation model and immune strategy, and introduces some research results and methods in the 

field of cyber security risk management. 
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INTRODUCTION 

At present, computer and network technology is widely used in various industries and fields, greatly promoting the 

development of national economy. With the continuous progress of science and technology, the development of computer 

network has become more and more mature and perfect. Due to the openness, sharing and complexity of the computer 

network, it has not only brought many conveniences to people's life, work and study, but also brought severe challenges to 

network security. In recent years, there have been a number of major cyber security incidents, such as the Stuxnet virus that 

attacked an Iranian nuclear power plant in 2010 and the Wanna Cry virus in 2017. Cyber security risk has become one of 

the most important risks facing contemporary society. Therefore, how to effectively manage cyber security risks has 

become one of the most urgent problems faced by all kinds of network users, including individuals, enterprises and 

governments. 

CYBER SECURITY RISK MANAGEMENT 

Cyber security risk management is a system engineering that contains multiple links, including the research and 

management of risk sources, epidemic threshold, transmission process and other links. 

The early definition of risk mainly refers to the probability of the occurrence of uncertainty between the 

investment purpose and the expected return, which can be divided into two categories: narrow sense risk and broad sense 

risk. Narrow sense risk mainly refers to the uncertainty of loss. Broad sense risk includes both uncertain attribute of loss 

and gain. The cyber security risk with the nature of propagation belongs to the narrow sense risk. 

Cyber security risk can be defined as all risks related to network information including virtual reality, such as 

malicious attacks, data theft, service interruption, etc. There are significant differences between cyber security risks and 
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traditional risks (auto insurance). Cyber security risk is systematic and global. Among them, the characteristic of 

systematizes and correlation of cyber security risk is particularly important. These characteristics are the key and difficult 

points of cyber security risk management. Although there is no strict definition of systemic risk in the literature, it is 

generally believed that this kind risk starts from a trigger event and then causes a series of adverse subsequent reactions, 

which is also commonly referred to as the domino effect. Therefore, the concept of systemic risk can be understood as the 

chain reaction of the initial attack, while the chain reaction is usually interpreted as the consequence of the spread or 

contagion of risk [ ]. In this way, the spread of risk in the network has become the key to the study of cyber security risk 

management. 

The components of risk propagation in network include risk source, transmission node, transmission medium and 

so on. Risks may originate from inside or outside the network, thus forming endogenous and exogenous risks. All nodes in 

the network have the capability of risk propagation. When the risk breaks through the propagation threshold and is 

combined with the specific network structure, a specific risk propagation network is formed accordingly. In order to 

evaluate and reduce the destructiveness of network risk, it is necessary to study the transmission process of risk. After 

mastering the law of risk propagation, certain methods can be used to intervene and avoid risks, so as to achieve 

"immunity" to the network system and achieve the effect of cyber security risk management. 

In the field of systematic risk transmission, since the carrier nodes of risk propagaton are often connected to form 

a network, researchers on risk problems tend to combine system theory and network theory with risk problems to overcome 

the limitation of calculation conditions and make the analysis results more widely applicable. 

THE EPIDEMIC THRESHOLD 

The problem of epidemic threshold is the focus of network risk propagation. Researchers hope to clearly understand the 

characteristics of network structure related to virus outbreak, so as to adopt effective strategies to suppress virus 

propagation. Hethcote proposed concepts related to the basic regeneration number R0 and viral transmission threshold. For 

the first time, Wang et al. built a discrete time SIS virus propagation model under the general network topology. Under this 

model, the author mainly discusses the threshold of virus outbreak in network, and establishes the threshold of virus 

outbreak based on the spectral radius of adjacency matrix and effective infection rate, which provides a theoretical basis for 

the phase transition phenomenon of virus behavior in network. Chakrabarti et al. proposed the precise expression of the 

epidemic threshold, that is, the virus transmission threshold is equal to the reciprocal of the maximum eigen value of the 

network adjacency matrix. At the same time, they point out, when transmission rates fall below the threshold, the virus dies 

at an exponential rate. Ganesh et al. extended Wang's work to the continuous time case and established a continuous time 

Markov virus propagation model. In the continuous time model, the concept of virus outbreak threshold is strictly defined, 

and the threshold is successfully obtained by means of probabilistic coupling. Draief et al. further studied that in the SIR 

model, if the ratio of cure rate to infection rate is greater than the spectral radius of the figure, and the number of initial 

infection nodes is small, the final infection scale is also small. If the ratio is less than the spectral radius, the final infection 

scale is larger in some specific graph structures. 

The epidemic threshold is not only related to the level of infection but also closely related to the network 

structure. The topological characteristics of different networks have different effects on risk propagation. Risk propagation 

threshold exists in regular network and random network. In scale-free network, no obvious propagation threshold can be 



Research on Cyber Security Risk Management                                                                                                                                        3 

 

 

Impact Factor(JCC): 4.5366 – This article can be downloaded from www.impactjournals.us 

 

found, and the risk propagation threshold of scale-free network of limited size will decrease to zero with the increase of 

network scale [ ]. In a small-world network, the spread of network risk is easier and faster than in a regular network. Based 

on the discrete Markov SIS model, Kocarev et al. divided the transmission process of virus into reaction process and 

contact process and gave the upper and lower bounds of node infection probability. The dependence of propagation process 

on network topology is evaluated according to the difference of bound. It is found that the size of node infection 

probability boundary is related to the average degree of node. 

In addition, the community structure in the network also has an impact on the epidemic threshold. Liu et al. found 

that the community structure in the network has a great influence on risk propagation. The threshold of risk propagation 

will be reduced due to the existence of network communities and further reduce the ultimate scale of virus transmission. 

Salathé et al. finds that the propagation rate of network risk increases in community structure networks due to the decrease 

of propagation threshold. The infection density of the node is stable at a fixed equilibrium point or presents periodic and 

unstable oscillations [ ]. Some other scholars have studied the transmission dynamics on scale-free networks based on 

different viral transmission models, such as SEAIR model and SIR model considering the randomness of transmission 

process. 

RISK PROPAGATION MODEL 

Propagation Model Based on Stochastic Process 

There are abundant researches on network risk propagation in the literature, which involve many different fields and 

theoretical methods. Virus propagation model based on stochastic process theory and its extension are important risk 

propagation models. Such models played an important role in early human understanding and response to infectious 

diseases and laid the foundation for the study of viral propagation. The transmission of epidemic diseases is closely related 

to the network and to some extent similar to the transmission characteristics of computer viruses. Therefore, the following 

studies on network risk propagation mainly focus on viruses. 

Pastor-Satorras et al. has done a lot of pioneering work in this area. They started with the simplest form of SI 

model, and then some improved models appeared successively, including SIR model, SIS model, SIRS model, SEIR model 

and so on. These models mainly describe the behavior of a virus that continues to spread (erupt) or disappear over the 

network. 

There are some related extended models including inhomogeneous models of infection rate and recovery rate, 

dynamic network structure models, dependent virus transmission models and so on. Xu et al. described the 

interdependence of network attack events by introducing the copula theory into the virus propagation model and gave the 

corresponding equilibrium threshold and the bounds of equilibrium infection probability and non-equilibrium infection 

probability. Boguna et al. proposed an algorithm for non-Markov discrete stochastic processes and gave precise analytical 

solutions. The influence of time distribution of non-exponential events in the SIS model under the condition of virus attack 

event independence and dependence is studied by this algorithm. Da et al. proposed a viral propagation model that could 

describe coordinated attacks with different infection probabilities. The upper bound of infection probability is given when 

the network system enters the equilibrium state. 
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Propagation Model Based on Probability Model 

Another important network risk propagation model is a static risk propagation probability model developed based on the 

propagation model first proposed by Kunreuther and Heal. In this model, it is assumed that the network faces two types of 

attacks direct attack and indirect attack. Direct attack is an attack that a network node obtains from outside the network. 

Indirect attack is an attack caused by successful external attacks propagating among network nodes.  

Kunreuther and Heal first proposed such models in the context of optimal strategy development for cyber 

security investments. They assume that each node has a probability of being directly attacked. The node that is 

successfully (directly) attacked will attack its neighbor (indirectly) with some probability, but the node that i s 

successfully indirectly attacked will not attack its neighbor again. That means indirect attacks are no longer 

contagious. This model is called the one-hop model. Subsequently, the one-hop model has been further extended by 

many scholars, such as the one-hop model considering the specific distribution of attack probability and the one-hop 

model considering the strategic attack. 

Lelarge, Bolot, Laszka et al. extended the one-hop model, called the multiple-hop model, by assuming the 

existence of sustained infectivity of indirect attacks under different research backgrounds. For this model, Lelarge and 

Bolot used the average field method commonly used in statistical physics to conduct approximate analysis on the model, 

and analyzed network security risk strategies such as network security technology and network security insurance 

application effect. Laszka et al. considered the problem of network security risk assessment, calculated the distribution of 

the number of nodes successfully attacked in the network under the one-hop model, and gave an explicit expression of the 

distribution. For the multiple-hop model, the author does not provide an accurate calculation method for the above 

distribution, but only approximates the distribution of the number of nodes of the final successful attack through Monte 

Carlo simulation, and discusses the difference between this distribution and the binomial distribution (ignoring the 

propagation effect), so as to understand how the propagation effect affects the network risk. 

Propagation Model in Other Areas 

Existing research on network risk propagation has been extended to other fields, such as information transmission in brain 

network, risk transmission in transportation system and so on. In addition to the two important risk propagation models 

mentioned above, there are also some risk propagation models applied to specific problems or scenarios in the literature. 

For example, in the research of public security management investment management, supply chain security risk investment 

management, network security insurance and other issues, some specific risk models are proposed. 

Aspones et al. proposed a model describing how to select nodes to set safeguards to control the spread of viruses 

in the network, and proved that the ratio between cost and optimal value is linear with the total number of nodes. They 

hypothesized that each infected node would eventually infect all of its unprotected neighbors, and that the cost of setting up 

safeguards and getting infected would be known. Infected nodes can observe which nodes tend to set protective measures 

and adjust their infection strategies accordingly. Johnson et al. proposed a network security investment model to solve the 

problem of choosing between the hybrid product of collective protection and individual mitigation and the external market 

insurance, and found several complete market insurance equilibria. Simon et al. built a model to analyze the optimal 

network security investment level of cooperative supply chain and the network security investment level of node 

independent supply chain. When the attacker has no discrimination attack, the node independent supply chain security is 
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lower than the optimal level. When an attacker attacks strategically, the optimal investment level of the supply chain varies 

greatly, while the expected damage to each node is similar. 

IMMUNIZATION STRATEGY 

Based on the network risk propagation model, the risk propagation process is studied, and the propagation law is mastered. 

The purpose is to control the risk propagation more effectively and reduce the loss of the network system as much as 

possible. Taking the corresponding node protection measures to the network, the network system can be immune to the 

risk, in order to achieve the purpose of network security risk management. The classical immunization strategies in 

complex networks include random immunity, target immunity and acquaintance immunity. 

The random immunization strategy refers to the random selection of some nodes in the network with a certain 

probability for immunity. The degree, position and other attributes of the node will not affect the selection of the node. 

Moreover, there is no priority order when immunizing nodes. This method has better immune effect in regular network and 

random network. However, in scale-free network, due to its unique structural characteristics, it cannot play a good immune 

effect. 

In order to avoid the limitation that random immunization strategy cannot be applied to scale-free network, the 

researchers proposed a targeted immunization strategy. Target immunization strategy refers to selecting some key nodes in 

the network for immunization. This immunization strategy is suitable for scale-free networks, and the more heterogeneous 

the network topology, the better the effect of the immunization strategy. This also indicates that the network topology has a 

certain influence on the dynamic behavior of virus transmission. However, this strategy needs to know the overall 

information of the network, which is difficult to implement for some large-scale actual networks. In order to improve 

immune efficiency, scholars proposed the strategy of acquaintance immunity. 

The strategy of acquaintance immunity refers to randomly selecting some nodes in the network with a certain 

probability, and then randomly selecting nodes from the neighbors of selected nodes for immunity. In scale-free networks, 

nodes with large degrees are much more likely to be selected after two steps than nodes with small degrees. This immune 

strategy is more efficient and requires only partial knowledge of the network. 

Many subsequent studies have been based on these classical immune strategies. Gallos et al. improved the 

strategy of acquaintance immunity and significantly reduced the immune threshold. Gomez-Gardenes et al. proposed a 

more flexible immunization strategy that falls between local and global immunization. And the model is applied to real 

network to verify its high practical value. In order to achieve the best immune effect with less cost, Chen et al. proposed an 

immune strategy based on graph segmentation theory. It can reduce the cost by 5 to 50 percent to achieve the same 

immune effect as a targeted immunization strategy. Wang et al. proposed an incomplete target immunization strategy in 

order to solve the situation that important nodes may be ignored. Moreover, it is found that there is a linear relationship 

between the reciprocal of transmission threshold and immunity rate. Based on the theory of explosive seepage, Clusella et 

al. proposed a two-fraction attack network strategy for targeted destruction of network connectivity. It can be understood in 

reverse to immunize network nodes. 
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CONCLUSIONS 

In the research field of cyber security risk management, scholars have done a lot of effective work. However, there are also 

some works to be further expanded and deepened: 

 Important nodes in the network have greater influence on the scale of cyber risk propagation. So how to identify 

the important nodes in the network is very important. In the future, we can consider how to identify important 

nodes in different networks to better manage cyber security risks, such as dynamic networks, networks with 

overlapping community structures, and so on. 

 When studying the risk transmission process, we can explore the key factors and specific methods to reduce the 

risk transmission probability by analyzing the risk transmission conditions. 

The spread of network risks has always been an important part of cyber security risks. Both the research on the 

propagation threshold and the propagation process is to grasp the propagation law of risk, predict the trend, and better 

realize the management of cyber security risk. Due to the similarity between network and system in many aspects, the 

thought and method of system theory can be further used to study related risk management problems in the future. It is 

believed that these studies will better promote the research on cyber security risk management. 
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