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ABSTRACT

In this paper, we study additive regression modatls spline smoothing, and determining the numlzdrknots

and their locations by using some statistical ddte
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INTRODUCTION

Regression analysis is a statistical tool thatzetdl the relation between two or more quantitatigables so that
one variable can be predicted from the other, bermst For example, if one knows the relation betwadvertising

expenditures and sales, one can predict salegbgs®on analysis once the level of advertisingeagiures has been set.
Linear regression is a statistical modeling techaithat relates the change in one variable to athgables( see[12]).

A simple linear regression line has an equatiothefformy = S, + f,x + €, wherex is the explanatory variable

and y is the dependent variable. The slop of theifs;, B, is the intercept, anelisan error term
( see[14)).

In many applications in different fields, we needise one of a collection of models for correlatath structures,
for example, multivariate observations clusterethdeepeated measurements, longitudinal data asmtibBp data. Often
random effects are used to describe the correlatiarcture in this type of this data. Mixed modaise an extension of
regression models that allow for the incorporatmandom effects. However, they also turn out éoctosely related to

smoothing ( see [16]).

In this paper we study Additive models with splsmoothing, and we present the definition, propsrééthe

statistical models, estimation method. Also we @néshe number of knots and their locations.
NONPARAMETRIC REGRESSION

Given data of the forx, ,y, ), (x2,¥2), .., (xn, ¥, ). Let themodel( see[5]):

y=g&) +e @)

Where the noise termsatisfies the usual conditions assumed for sidipéar regression, we seek an estimate of
the regression functiog(x) satisfying the model (1). There are several apgres to this problem, we will describe

methods involving splines.
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SPLINES

The discovery that piecewise polynomials or splicesld be used in place of polynomials occurrethmearly
twentieth century. Splines have since become oribeomost popular ways of approximating nonlineanctions. Splines
are essentially defined as piecewise. Let k beraaynumber, then can defing&#degree truncated power function as(
see[2,3,4,7,8,9,10]):

(x= k)] = (x= k)Plizsiy() )

As a function ofx, this function takes on the value 0 to the lefkpfind it takes on the valec - k)P to the

right of k. The numbek is called a knot.

The above truncated power function is a basic ejaipa spline. It is a member of the set of basigtions for
the space of splines.

Let us consider a general® degree splinewith a single knot at k. IRtx) denote an arbitrary®" degree

polynomial.
P(x) = By + Bix + Box® + .. 4+ Bpx?
Then:
S(x) = P(x) + Bpaa(x- k)Y 3
Takes on the valuB(x) for anyx < k, and it takes on the value
P(x) + Bpi1(x - k)Pforany > k

Thus, restricted to each region, the function jg"adegree polynomial. As a whole, this function ig*4 degree

piecewise polynomial; there are two pieces.

Note that require + 2 coefficients to specify this piecewise polynomighis is a result of the addition of the
truncated power function specified by the knokatin general, we may adkl truncated power function specified at

ki, ks, ..., kg, each multiplied by different coefficients. Thuswid result inp + K + 1 degree of freedom.

An important property of splines is their smoottmeBolynomials are very smooth, possessing alvatves
everywhere. Splines possess all derivatives onppatts which are not knots. The number of derixegtiat a knot depends

on the degree of the spline, consider the splinBhwe can show th&{x) is continuous ak,whenp > 0 by noting that:
S(k) = P(k)
Andlim, , Bpia(x - k) = 0
So thatlim,_, S(x) = P(k)
Can argue similarly for the firgt— 1 derivatives
SWOk) = PDk), j=1,2,..,p-1

And

Articles can be sent teeditor@impactjournals.us




| spline Additive Regression Models 39 |

limy i Bpsr P(P-1) - (p-j+ 1) (x-k)P~/ =0
So thatim,_,;, SP(x) = PU (k) Thep™ derivative behaves differently:

SP() = pi,
Andlim,._, S(p)(x) = p!ﬂp + p!ﬁp+1

So usually there is a discontinuity in th& derivative. Thup*" degree splines are usually said to have no more

than(p- 1) continuous derivatives.

The discussion below (3) indicates that can rempteaay piecewise polynomials of degpeé the following

way:
Sx) = Bo 4 Prx + o+ BpxP + Bpia(x- k)b + o+ Bprx(x - k)l (4)
Any piecewise polynomial can be expressed as arioembination of truncated power functions and/pomial
of degreep
Bot+ Bix + .. + Bpx? , x < ky
Bot+ Bix + ..+ BpxP + Bpi(x - k)P , ki <x<k,
SO =9 Bo+ Brx + o+ BpxP + Bpya(x- k)P + Bpya(x- k)P, ky <x < ks

| :

UBot Bt + o+ Bpx® + Boar(x= k)P + o+ Boar(X- k)P, x> kg
In the other words,
{1,2,x%, 0 ,xP ,(x- k)8, (x- k)% o, (x - kR }

Is a basis for the spacepdt degree splines possessing knot&,ak, , ..., k. By adding a noise term to (4), we
can obtain a splines regression model relatingparese

Y=S(x)+¢ (5)
To the predictox.
Penalized Splines
Let us consider the model (1) with linear splidents ) as( see[1,8,9,10,15]):
S() = Bo + Bix + TI_ Brj (x- Ky,
Then the ordinary least squares fit can be writtes: X 8,

Where3 minimizes||Y — XB||2, with B = (B, By, P11 Prz » - Brg)"and with

1 xl (xl— kl )+ o (xl_ kq )+
X=|1 Xy (X2-ki)y - (xz—kq)+|
1 x, (xn_ ky)e - (xn_ kq )+
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Unconstrained estimation gf,, B;,, ..., f14leads to a wiggly fit. For judicious choice ©f a constraint of the
type:

q 2
j=1Bij <C

If we define the(q + 2) X (g + 2) matrix.

0 0 0 O 0

[O 0 0 0 O]
p=10010 ol_ 02%2 Ozxq]

000 1+ 07 l0e lox

lo 0 0 0 - 1J

The minimization problem can be writtenM ||Y — X3||?

Subject to

BTD B < C

It can be shown, using a Lagrange multiplier argotiribat this is equivalent to choosigto minimize:

lY — XBII> + 2*"Dp (6)
For somé > 0. This has the solution

Br=X"X+22D) X"y (7

The termA?BTDg is called a roughness penalty because it penafieshat are too rough, thus yielding a

smoother result. The amount of smoothing is coladdbyA( the smoothing parameter ).

When the value of the smoothing parameigig very large theg;;, — 0 leads to the estimator is polynomials of

degreeg only, while if thel = 0 then leads to no exist roughness penalty.
Number and Position of Knots

If the number of knots too small, then the bias banlarge in estimator, and if the number too laitges,

preferred, we can use all the observations as knots

Literature proposes several aapproaches to autorkatt selection. Many of them are based on stepwis
regression ideas. Although most of theautomatid leetection procedures proposed exhibit good perdoce they are
each quite complicated and computationally intemsin penalized spline the number of knot§ X that usually works

well is:

K = min G number of unique x;, 35), (see[10,15,17]):

. . k+1\ " . .
As the position of knots determine from t@g—z) sample quantile of the uniqugfork = 1,2, ... K.

Cross Validation (CV)

Let 7i(x, A) denote the regression estimate at a poiwith smoothing parametérOne of the most common
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measures for the goodness of fit of a regressioveco a scatter plot is the residual sum of SRERSES)

RSS (1) = Xita(vi — 99)° ®)

Withy; = m(x;, 4).However, sinc&kSSis minimized at the interpolla@y; = y;, i = 1,2, ... ,n),minimization of
this criterion will lead to the smooth that is @ss to interpolation. For penalized spline thisresponds to a zero

smoothing parameter. Cross validation gets arohisdoroblem. The cross validationcriterion is( $e&4]):
CVA) = Xily: — Mo (x, D)? 9)

Wherefi_; denotes the regression estimator applied to ttee lolzt with(x;, y;)deleted. TheCV choiceofl, Ay is

the one that minimiz&¥/(1)overi > 0.
Generalized Cross Validation (GCV )

Efficient algorithms for computation @fV’ (1)were developed in the mid1980s.Before that timediifeculties
surrounding computation of the cross-validatiortecion led to the proposal of a simplified versidrhis simplified

criterion is known a generalized cross-validation.

_nZEAU-SpyI? _ nEh, (r-m@pA)? _ nRSS (1)
GV = (tr (1-53))? (tr(1=s)2 (tr(I-5p)? (10)
WhereS; be the smoother matrix associated wigmds, satisfyY = S, Y( see[5,10,15]).

Mixed Models

Mixed models are an extension of regression madtbelsallow for the incorporation of random effecdsmore
contemporary application of mixed models is thelysis of longitudinal data, clustered data repeatexhsurements and
spatially correlated data.The general form of adinmixed model is given as follows( see[15]):

Yi = Xif + Yo Zijwij + € (11
u;;~N(0,G;), €~N(O,R;)
Where the vector; has lengthm;, X; andZ;; are, respectively, a; X p design matrix and &; X g; design

matrix of fixed and random effectgis ap-vector of fixed effects and;; are theg;-vectors of random effects. The

variance matrixG; is aq; x q; matrix andr; is am; X m; matrix.

We assume that the random effects;; i = 1,..,n; j = 1,..,r} and the set of error ternfs,, ..., €,} are

independent. In matrix notation,
Y=X+Zu+e (12)

HereY = (¥, ...,¥,)" haslengtth =YY" m;, X = (X7,...,X))Tis aN x p design matrix of fixed effects, Z is
aN x q block diagonal design matrix of random effegtss Y7_, q; , u = (uf, ...,u; )" is a g-vector of random effects,

R =diag (R4, ..., R,) is aN x N matrix andG = diag(G,, ..., G,) is aq %X q block diagonal matrix.

We nowthat treat estimation &f prediction ofu, and estimation of the parametergzimandR, one way to drive

an estimate of is to rewrite (12) as:
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Y =XB +¢", wheree®* =Zu+¢

This is just a linear model with correlated ersince:

cov(e) =V =2GZT +R

For givenV, the estimator of is:

B =XV 1x)"1xTy-1ly (13)

And is sometime referred to as generalized lingaages GLS. ForY having a general distribution (13) can be
shown to be the best linear unbiased estim&bUE) for B. Alternatively, ifY is multivariate normal, then the right hand
said of (13) is both the maximum likelihood estiotaMLE) and the uniformly minimum variance unbiased eaton
(UMVUE).

The latter is the estimator that has the best(gslpossible variance of any unbiased estimagardéess of the
parameters values [15].

The random effects vector can be predicted vialbesir prediction.
it =BLP(w) = GZTV XY — Xf) (14)
Then theBLUP of (8, u) can also be written as:-
[g] = (CTR™'C 4+ B)"'CTR™'Y (15)
Where

CE[XZ]andB=[O 0]

0 G*

The fitted values are then:

BLUP(Y) = XB + Zii = C(CTR™'C + B)"'C"R™'Y = HY (16)
WhereH called Hat matrix or smoother matrix,

The Log - likelihood df under the modef ~N(Xp,V) is:-

L(B,V) = —2{nlog(2m) + log|V| + (¥ — XB)TV"1(Y — Xp)} a7)
By substitution (13) in (17) we obtain the profitey — likelihood for V:

Ly(V) = —>{loglV| + (Y = XB)TV=Y(Y - XB) + nlog(2m)}

= —%{ loglVI+ YTV 1 = X(XTV1X )T X"V 1}Y] = Zlog(2m) (18)

Penalized Spline as BLUPs

The penalized spline fitting criterion (6) ,wherided bys? can then be written as( see[15]):

1 A2
Y = XB - Zull? + % ull? (19)
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Notice that this can be made to equal the BLURKGdh by treading the u as a set of random coefiisi with:

2
cov(u) = o2l , where? = ;—;

Putting all of this together yields the mixed modsgdresentation of the regression spline

Y=XB+Zu+candf = X + Zu

cov [Z] = JSZI ogl] (20)
Note that the fitted valuefcan be rewritten as:
f=cc+2D) 'y (21)
Additive Models
Let the Model:-
Y =300 BiXji + my(Xpars) +ei=1,..,m 22}

We call (22) the additive models it has a parametdomponentzﬁ.’zoﬁjXﬁ and nonparametric

componentsy, (X,1,).
In this paper will get this additive modgl= X7_, 8;X;; + m(Xp41:) + w(Xpi2:) + €

By using penalized spline of degrgeto first nonparametric component andto second nonparametric

component, get:

. K . %
Vi = Z?:o ﬂjxji + Z?:l ﬂp+jx;j;+1,i + Zkil{uk(xp+1,i - kk):?- + Z§=1 .Bp+q+jx;j;+1,i + stzl{ul(q+k(xp+1,i -
k)i + € (23)

Wheré;, ...,k,(qandkl, o, kg are inner knota < k; <,,, < qu < banda <k; <,,,< kg, <b.

By using a convenient connection between penalg@thes and mixed models. Model (23) is rewritten a
follows( see[6,8,9,13,15,16,17])

Y=XB+Zu+c¢ (24)
Where
Bo
By U
V1 .Bp+1 [ u;(q
Y = S y ﬂ = 5 y u = u
Yn By+a |
Bp+q+1 l Uk, J
.ﬁp+q+s.
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_ a .. — q s s
(Xp+1,1 — k1) (pr11 = ki )y Opazr — k)i (piz1 — ki)t
Z = : - : ) : :
q q — kDS ... — s
(xp+1,n k)i o (xp+1,n - qu)+ (xp+2.n ki) (xp+2.n kKs)+
a s
[T X1 oo Xp1 Xpe11 o Xprag Xpr21 - Xprzi]
q N
X = 1 X2 . Xp2  Xpy12 o Xpiip Xp+22 - Xp+22
1 a X x5
xln xpn xp+1'n e xp+1’n p+2,n p+2n

Assume thatu and ¢ are independent and normally distributed wasN(0,G), e~N(0,R), whereR =

diag(o,,, -, 0¢,) isan X n matrix andc = diag(oy,,, ...,auKS)

The estimation of the paramet@sandu entails minimizing the penalized least square®igan
Y= XB— Zu|* + *u"Du; (25)

WhereD, is penalty matrix. For a given smoothing parametatrix D, the penalized least squares estimators
from (25)are :

T T -1
(i): (Zrx ziz5p) ()Y (26)

And the fitted values afe= X + Z@i = HY , whereH is the smoothingmatrix given by

v ol A, 6 g

WhereH is smoothing matrix.

CONCLUSIONS

We can representation additive model as mixed mbglelising a convenient connection between penalized
splines and mixed models.
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